
Erlang Extensions Since 4.4

version 5.1

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 Erlang Extensions Since 4.4 1

1.1 Records . 1

1.1.1 Defining a Record . 2

1.1.2 Including a Record Definition . 2

1.1.3 Creating a Record . 3

1.1.4 Selectors . 3

1.1.5 Updating a Record . 4

1.1.6 Type Testing . 4

1.1.7 Pattern Matching . 4

1.1.8 Nested Records . 5

1.1.9 Internal Representation of Records . 5

1.1.10 Example . 6

1.2 Programming with Funs . 7

1.2.1 Higher Order Functions . 7

1.2.2 Advantages of Higher Order Functions . 9

1.2.3 The Syntax of Funs . 9

1.2.4 Variable Bindings within a Fun . 11

1.2.5 Funs and the Module Lists . 12

1.2.6 Funs which Return Funs . 17

1.3 List Comprehensions . 20

1.3.1 Examples of List Comprehensions . 20

1.3.2 Variable Bindings in List Comprehensions . 22

1.4 Macros . 23

1.4.1 Macros and Tokens . 24

1.4.2 Pre-Defined Macros . 24

1.4.3 Stringifying Macro Arguments . 24

1.4.4 Flow Control in Macros . 25

1.4.5 A Macro Expansion Utility . 25

1.5 Includes . 26

1.5.1 The -include Directive . 26

iiiErlang Extensions Since 4.4

1.5.2 The -include lib Directive . 26

1.6 The Bit Syntax . 26

1.6.1 Introduction . 27

1.6.2 A Lexical Note . 28

1.6.3 Segments . 28

1.6.4 Defaults . 29

1.6.5 Constructing Binaries . 29

1.6.6 Matching Binaries . 30

1.6.7 Traps and Pitfalls . 31

1.7 Miscellaneous . 31

1.7.1 Token Syntax . 32

1.7.2 String Concatenation . 32

1.7.3 The ++ list Concatenation Operator . 33

1.7.4 The - - list Subtraction Operator . 33

1.7.5 Bitwise Operator bnot . 33

1.7.6 Logical Operators . 33

1.7.7 Match Operator = In Patterns . 34

1.7.8 Literal String Prefix in Patterns . 34

1.7.9 Disjunctions in Guards . 34

1.7.10 Expressions in Patterns . 35

1.7.11 Boolean expresions in guards . 35

1.7.12 Short-circuit boolean expressions . 36

List of Tables 37

iv Erlang Extensions Since 4.4

Chapter 1

Erlang Extensions Since 4.4

This chapter describes extensions made to the Erlang language since version 4.4 (where nothing is said
to the contrary, an extension was added in version 4.4). The chapter contains the following sections:

� Records

� Functional Objects (Funs)

� List Comprehensions

� Macros

� File inclusion

� Bit syntax

� Miscellaneous

1.1 Records

A record is a data structure intended for storing a fixed number of related data items. It is similar to a
struct in C, or a record in Pascal.

The main advantage of using records instead of tuples is that fields in a record are accessed by name,
whereas fields in a tuple are accessed by position. To illustrate these differences, suppose that we want
to represent a person with the tuple fName, Address, Phoneg.

We must remember that the Name field is the first element of the tuple, the Address field is the second
element, and so on, in order to write functions which manipulate this data. For example, to extract data
from a variable P which contains such a tuple we might write the following code and then use pattern
matching to extract the relevant fields.

Name = element(1, P),
Address = element(2, P),
...

Code like this is difficult to read and understand and errors occur if we get the numbering of the
elements in the tuple wrong. If we change the data representation by re-ordering the fields, or by
adding or removing a field, then all references to the person tuple, wherever they occur, must be
checked and possibly modified.

1Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

Records allow us to refer to the fields by name and not position. We use a record instead of a tuple to
store the data . If we write a record definition of the type shown below, we can then refer to the fields
of the record by name.

-record(person, {name, phone, address}).

For example, if P is now a variable whose value is a person record, we can code as follows in order to
access the name and address fields of the records.

Name = P#person.name,
Address = P#person.address,
...

In the following sections we describe the different operations which can be performed on records:

1.1.1 Defining a Record

A record is defined with the following syntax:

-record(RecordName, {Field1 [= DefaultValue1],
Field2 [= DefaultValue2],
...,
FieldN [= DefaultValueN]}).

The record name and field names must be atoms. The optional default values, which are terms, are used
if no value is supplied for a field when a new instance of the record is created. If the default value is not
supplied, then the atom undefined is assumed.

For example, in the following record definition, the address field is undefined.

-record(person, fname = "", phone = [], addressg).

This definition of a person will be used in many of the examples which follow.

1.1.2 Including a Record Definition

If the record is used in several modules, its definition should be placed in a .hrl header file. Each
module which uses the record definition should have a -include(FileName). statement. For example:

-include("my_data_structures.hrl").

Note:
The definition of the record must come before it is used.

2 Erlang Extensions Since 4.4

1.1: Records

1.1.3 Creating a Record

A new record is created with the following syntax:

#RecordName{Field1=Expr1,
...,
FieldM=ExprM}.

If any of the fields is omitted, then the default value supplied in the record definition is used. For
example:

> #personfphone = [0,8,2,3,4,3,1,2], name = "Robert"g.
fperson, "Robert", [0,8,2,3,4,3,1,2], undefinedg.

There is a new feature introduced in Erlang 5.1 (OTP release R8), with which you can set a value to all
fields in a record, overriding the defaults in the record specification. The special field , means “all fields
not explicitly specified”.

> #personfname = "Jakob", = ’ ’g
fperson, "Jakob", ’ ’, ’ ’g

It is primarily intended to be used in ets:match/2 and mnesia:match object/3, to set record fields to
the atom ’ ’. (This is a wildcard in ets:match/2.)

1.1.4 Selectors

The following syntax is used to select an individual field from a record:

Variable#RecordName.Field

Note:
The values contained in record names and fields must be constants, not variables.

Note:
For the purposes of illustration, we will demonstrate the use of records using an imaginary dialogue
with the Erlang shell. Currently the Erlang evaluator does not support records so you may not be
able to reproduce this dialogue.

> P = #personfname = "Joe", phone = [0,8,2,3,4,3,1,2]g.
fperson, "Joe", [0,8,2,3,4,3,1,2], undefinedg
> P#person.name.
"Joe"

Note:
Selectors for records are allowed in guards.

3Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

1.1.5 Updating a Record

The following syntax is used to create a new copy of the record with some of the fields changed. Only
the fields to be changed need to be referred to, all other fields retain their old values.

OldVariable#RecordName{Field1 = NewValue1,
...,

FieldM = NewValueM}

For example:

> P1 = #personfname="Joe", phone=[1,2,3], address="A street"g.
fperson, "Joe", [1,2,3], "A street"g
> P2 = P1#personfname="Robert"g.
fperson, "Robert", [1,2,3], "A street"g

1.1.6 Type Testing

The following guard test is used to test the type of a record:

record(Variable, RecordName)

The following example shows that the guard succeeds if P is record of type person.

foo(P) when record(P, person) -> a person;
foo() -> not a person.

Note:
This test checks that P is a tuple of arity N + 1, where N is the number of fields in the record, and the
first element in the tuple is the atom person.

1.1.7 Pattern Matching

Matching can be used in combination with records as shown in the following example:

> P = #personfname="Joe", phone=[0,0,7], address="A street"g.
fperson, "Joe", [0,0,7], "A street"g
> #personfname = Nameg = P, Name.
"Joe"

The following function takes a list of person records and searches for the phone number of a person
with a particular name:

4 Erlang Extensions Since 4.4

1.1: Records

find_phone([#person{name=Name, phone=Phone} | _], Name) ->
{found, Phone};

find_phone([_| T], Name) ->
find_phone(T, Name);

find_phone([], Name) ->
not_found.

Note:
The fields referred to in the pattern can be given in any order.

1.1.8 Nested Records

The value of a field in a record might be an instance of a record. Retrieval of nested data can be done
stepwise, or in a single step, as shown in the following example:

-record(person, fname = #namefg, phoneg).
-record(name, ffirst = "Robert", last = "Ericsson"g).

demo() ->
P = #personfname= #nameffirst="Robert",last="Virding"g, phone=123g,
First = (P#person.name)#name.first.

Note:
In this example, demo() evaluates to "Robert".

1.1.9 Internal Representation of Records

It is often desirable to write generic functions which will work on any record, not just a record of a
particular type. For this reason, records are represented internally as tuples and the ordering of the fields
in the tuple is strictly defined.

For example, the record -record(person, fname, phone, addressg). is represented internally by
the tuple fperson, X, Y, Zg.

The arity of the tuple is one more than the number of fields in the tuple. The first element of the tuple
is the name of the record, and the elements of the tuple are the fields in the record. The variables X, Y
and Z will store the data contained in the record fields.

The following two functions determine the indices in the tuple which refer to the named fields in the
record:

� record info(fields, Rec) -> [Names]. This function returns the names of the fields in the
record Rec. For example, record info(fields, person) evaluates to [name, address,
phone].

� record info(size, Rec) -> Size. This function returns the size of the record Rec when
represented as a tuple, which is one more than the number of fields. For example,
record info(size, person) returns 4.

5Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

In addition, #Rec.Name returns the index in the tuple representation of Name of the record Rec.

Note:
Name must be an atom.

For example, the following test function test() might return the result shown:

test() ->
frecord info(fields, person),
record info(size, person),
#person.nameg.

> Mod:test().
f[name,address,phone],4,2g

The order in which records map onto tuples is implementation dependent.

Note:
record info is a pseudo-function which cannot be exported from the module where it occurs.

1.1.10 Example

%% File: person.hrl

%%---
%% Data Type: person
%% where:
%% name: A string (default is undefined).
%% age: An integer (default is undefined).
%% phone: A list of integers (default is []).
%% dict: A dictionary containing various information
%% about the person.
%% A fKey, Valueg list (default is the empty list).
%%--
-record(person, fname, age, phone = [], dict = []g).

-module(person).
-include("person.hrl").
-compile(export all). % For test purposes only.

%% This creates an instance of a person.
%% Note: The phone number is not supplied so the
%% default value [] will be used.

make hacker without phone(Name, Age) ->
#personfname = Name, age = Age,

dict = [fcomputer knowledge, excellentg,

6 Erlang Extensions Since 4.4

1.2: Programming with Funs

fdrinks, cokeg]g.

%% This demonstrates matching in arguments

print(#personfname = Name, age = Age,
phone = Phone, dict = Dictg) ->

io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
"Dictionary: ~w.~n", [Name, Age, Phone, Dict]).

%% Demonstrates type testing, selector, updating.

birthday(P) when record(P, person) ->
P#personfage = P#person.age + 1g.

register two hackers() ->
Hacker1 = make hacker without phone("Joe", 29),
OldHacker = birthday(Hacker1),
% The central register server should have
% an interface function for this.
central register server ! fregister person, Hacker1g,
central register server ! fregister person,

OldHacker#personfname = "Robert",
phone = [0,8,3,2,4,5,3,1]gg.

1.2 Programming with Funs

This section introduces functional objects (Funs). That is a new data type introduced in Erlang 4.4.
Functions which takes Funs as arguments, or which return Funs are called higher order functions.

� Funs can be passed as arguments to other functions, just like lists or tuples

� functions can be written which return Funs, just like any other data object.

1.2.1 Higher Order Functions

Funs encourages us to encapsulate common patterns of design into functional forms called higher order
functions. These functions not only shortens programs, but also produce clearer programs because the
intended meaning of the program is explicitly rather than implicitly stated.

The concepts of higher order functions and procedural abstraction are introduced with two brief
examples.

Example 1 - map

If we want to double every element in a list, we could write a function named double:

double([H|T]) -> [2*H|double(T)];
double([]) -> []

This function obviously doubles the argument entered as input as follows:

7Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

> double([1,2,3,4]).
[2,4,6,8]

We now add the function add one, which adds one to every element in a list:

add_one([H|T]) -> [H+1|add_one(T)];
add_one([]) -> [].

These functions, double and add one, have a very similar structure. We can exploit this fact and write a
function map which expresses this similarity:

map(F, [H|T]) -> [F(H)|map(F, T)];
map(F, []) -> [].

We can now express the functions double and add one in terms of map as follows:

double(L) -> map(fun(X) -> 2*X end, L).
add_one(L) -> map(fun(X) -> 1 + X end, L).

map(F, List) is a function which takes a function F and a list L as arguments and returns the new list
which is obtained by applying F to each of the elements in L.

The process of abstracting out the common features of a number of different programs is called
procedural abstraction. Procedural abstraction can be used in order to write several different functions
which have a similar structure, but differ only in some minor detail. This is done as follows:

1. write one function which represents the common features of these functions

2. parameterize the difference in terms of functions which are passed as arguments to the common
function.

Example 2 - foreach

This example illustrates procedural abstraction. Initially, we show the following two examples written
as conventional functions:

1. all elements of a list are printed onto a stream

2. a message is broadcast to a list of processes.

print_list(Stream, [H|T]) ->
io:format(Stream, "~p~n", [H]),
print_list(Stream, T);

print_on_list(Stream, []) ->
true.

broadcast(Msg, [Pid|Pids]) ->
Pid ! Msg,
broadcast(Msg, Pids);

broadcast(_, []) ->
true.

8 Erlang Extensions Since 4.4

1.2: Programming with Funs

Both these functions have a very similar structure. They both iterate over a list doing something to each
element in the list. The “something” has to be carried round as an extra argument to the function which
does this.

The function foreach expresses this similarity:

foreach(F, [H|T]) ->
F(H),
foreach(F, T);

foreach(F, []) ->
ok.

Using foreach, print on list becomes:

foreach(fun(H) -> io:format(S, "~p~n~,[H]) end, L)

broadcast becomes:

foreach(fun(Pid) -> Pid ! M end, L)

foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) calls Fun(X) for each
element X in L and the processing occurs in the order in which the elements were defined in L. map does
not define the order in which its elements are processed.

1.2.2 Advantages of Higher Order Functions

Programming with higher order functions, such as map and foreach, has a number of advantages:

� It is much easier to understand the program and the intention of the programmer is clearly
expressed in the code. The statement foreach(fun(X) -> clearly indicates that the intention of
this program is to do something to each element in the list L. We also know that the function
which is passed as the first argument of foreach takes one argument X, which will be successively
bound to each of the elements in L.

� Functions which take Funs as arguments are much easier to re-use than other functions.

1.2.3 The Syntax of Funs

Funs are written with the syntax:

F = fun (Arg1, Arg2, ... ArgN) ->
...

end

This creates an anonymous function of N arguments and binds it to the variable F.

If we have already written a function in the same module and wish to pass this function as an argument,
we can use the following syntax:

F = fun FunctionName/Arity

9Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

With this form of function reference, the function which is referred to does not need to be exported
from the module.

We can also refer to a function defined in a different module with the following syntax:

F = {Module, FunctionName}

In this case, the function must be exported from the module in question.

The follow program illustrates the different ways of creating Funs:

-module(fun_test).
-export([t1/0, t2/0, t3/0, t4/0, double/1]).
-import(lists, [map/2]).

t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).

t2() -> map(fun double/1, [1,2,3,4,5]).

t3() -> map({?MODULE, double}, [1,2,3,4,5]).

double(X) -> X * 2.

We can evaluate the fun F with the syntax:

F(Arg1, Arg2, ..., Argn)

To check whether a term is a Fun, use the test function/1 in a guard. Example:

f(F, Args) when function(F) ->
apply(F, Args);

f(N, _) when integer(N) ->
N.

Funs are a distinct type. The BIFs erlang:fun info/1,2 can be used to retrieve information about a fun,
and the BIF erlang:fun to list/1 returns a textual representation of a fun. The check process code/2 BIF
returns true if the process contains funs that depend on the old version of a module.

Note:
In OTP R5 and earlier releases, funs were represented using tuples.

10 Erlang Extensions Since 4.4

1.2: Programming with Funs

1.2.4 Variable Bindings within a Fun

The scope rules for variables which occur in Funs are as follows:

� All variables which occur in the head of a Fun are assumed to be “fresh” variables.

� Variables which are defined before the Fun, and which occur in function calls or guard tests
within the Fun, have the values they had outside the Fun.

� No variables may be exported from a Fun.

The following examples illustrate these rules:

print_list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
file:close(Stream).

In the above example, the variable X which is defined in the head of the Fun is a new variable. The
value of the variable Stream which is used within within the Fun gets its value from the file:open line.

Since any variable which occurs in the head of a Fun is considered a new variable it would be equally
valid to write:

print_list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(File) ->

io:format(Stream,"~p~n",[File])
end, List),

file:close(Stream).

In this example, File is used as the new variable instead of X. This is rather silly since code in the body
of the Fun cannot refer to the variable File which is defined outside the Fun. Compiling this example
will yield the diagnostic:

./FileName.erl:Line: Warning: variable ’File’
shadowed in ’lambda head’

This reminds us that the variable File which is defined inside the Fun collides with the variable File
which is defined outside the Fun.

The rules for importing variables into a Fun has the consequence that certain pattern matching
operations have to be moved into guard expressions and cannot be written in the head of the Fun. For
example, we might write the following code if we intend the first clause of F to be evaluated when the
value of its argument is Y:

f(...) ->
Y = ...
map(fun(X) when X == Y ->

;
(_) ->
...

end, ...)
...

11Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

instead of

f(...) ->
Y = ...
map(fun(Y) ->

;
(_) ->
...

end, ...)
...

1.2.5 Funs and the Module Lists

The following examples show a dialogue with the Erlang shell. All the higher order functions discussed
are exported from the module lists.

map

map(F, [H|T]) -> [F(H)|map(F, T)];
map(F, []) -> [].

map takes a function of one argument and a list of terms. It returns the list obtained by applying the
function to every argument in the list.

1> Double = fun(X) -> 2 * X end.
#Fun<erl eval>
2> lists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]

When a new Fun is defined in the shell, the value of the Fun is printed as Fun#<erl eval>

any

any(Pred, [H|T]) ->
case Pred(H) of

true -> true;
false -> any(Pred, T)

end;
any(Pred, []) ->

false.

any takes a predicate P of one argument and a list of terms. A predicate is a function which returns
true or false. any is true if there is a term X in the list such that P(X) is true.

We define a predicate Big(X) which is true if its argument is greater that 10.

3> Big = fun(X) -> if X > 10 -> true; true -> false end end.
#Fun<erl eval>
4> lists:any(Big, [1,2,3,4]).
false.
5> lists:any(Big, [1,2,3,12,5]).
true.

12 Erlang Extensions Since 4.4

1.2: Programming with Funs

all

all(Pred, [H|T]) ->
case Pred(H) of

true -> all(Pred, T);
false -> false

end;
all(Pred, []) ->

true.

all has the same arguments as any. It is true if the predicate applied to all elements in the list is true.

6> lists:all(Big, [1,2,3,4,12,6]).
false
7> lists:all(Big, [12,13,14,15]).
true

foreach

foreach(F, [H|T]) ->
F(H),
foreach(F, T);

foreach(F, []) ->
ok.

foreach takes a function of one argument and a list of terms. The function is applied to each argument
in the list. foreach returns ok. It is used for its side-effect only.

8> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
1
2
3
4
true

foldl

foldl(F, Accu, [Hd|Tail]) ->
foldl(F, F(Hd, Accu), Tail);

foldl(F, Accu, []) -> Accu.

foldl takes a function of two arguments, an accumulator and a list. The function is called with two
arguments. The first argument is the successive elements in the list, the second argument is the
accumulator. The function must return a new accumulator which is used the next time the function is
called.

If we have a list of lists L = ["I","like","Erlang"], then we can sum the lengths of all the strings in
L as follows:

9> L = ["I","like","Erlang"].
["I","like","Erlang"]
10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
11

13Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

foldl works like a while loop in an imperative language:

L = ["I","like","Erlang"],
Sum = 0,
while(L != []){

Sum += length(head(L)),
L = tail(L)

end

mapfoldl

mapfoldl(F, Accu0, [Hd|Tail]) ->
{R,Accu1} = F(Hd, Accu0),
{Rs,Accu2} = mapfoldl(F, Accu1, Tail),
{[R|Rs], Accu2};

mapfoldl(F, Accu, []) -> {[], Accu}.

mapfoldl simultaneously maps and folds over a list. The following example shows how to change all
letters in L to upper case and count them.

First upcase:

11> Upcase = fun(X) when $a =< X, X =< $z -> X + $A - $a;
(X) -> X

end.
#Fun<erl eval>
12> Upcase word =

fun(X) ->
lists:map(Upcase, X)

end.
#Fun<erl eval>
13> Upcase word("Erlang").
"ERLANG"
14> lists:map(Upcase word, L).
["I","LIKE","ERLANG"]

Now we can do the fold and the map at the same time:

14> lists:mapfoldl(fun(Word, Sum) ->
14> fUpcase word(Word), Sum + length(Word)g
14> end, 0, L).
f["I","LIKE","ERLANG"],11g

14 Erlang Extensions Since 4.4

1.2: Programming with Funs

filter

filter(F, [H|T]) ->
case F(H) of

true -> [H|filter(F, T)];
false -> filter(F, T)

end;
filter(F, []) -> [].

filter takes a predicate of one argument and a list and returns all element in the list which satisfy the
predicate.

15> lists:filter(Big, [500,12,2,45,6,7]).
[500,12,45]

When we combine maps and filters we can write very succinct and obviously correct code. For example,
suppose we want to define a set difference function. We want to define diff(L1, L2) to be the
difference between the lists L1 and L2. This is the list of all elements in L1 which are not contained in
L2. This code can be written as follows:

diff(L1, L2) ->
filter(fun(X) -> not member(X, L2) end, L1).

The AND intersection of the list L1 and L2 is also easily defined:

intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

takewhile

takewhile(Pred, [H|T]) ->
case Pred(H) of

true -> [H|takewhile(Pred, T)];
false -> []

end;
takewhile(Pred, []) ->

[].

takewhile(P, L) takes elements X from a list L as long as the predicate P(X) is true.

16> lists:takewhile(Big, [200,500,45,5,3,45,6]).
[200,500,45]

15Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

dropwhile

dropwhile(Pred, [H|T]) ->
case Pred(H) of

true -> dropwhile(Pred, T);
false -> [H|T]

end;
dropwhile(Pred, []) ->

[].

dropwhile is the complement of takewhile.

17> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
[5,3,45,6]

splitlist

splitlist(Pred, L) ->
splitlist(Pred, L, []).

splitlist(Pred, [H|T], L) ->
case Pred(H) of

true -> splitlist(Pred, T, [H|L]);
false -> {reverse(L), [H|T]}

end;
splitlist(Pred, [], L) ->

{reverse(L), []}.

splitlist(P, L) splits the list L into the two sub-lists fL1, L2g, where L = takewhile(P, L) and L2
= dropwhile(P, L).

18> lists:splitlist(Big, [200,500,45,5,3,45,6]).
f[200,500,45],[5,3,45,6]g

first

first(Pred, [H|T]) ->
case Pred(H) of

true ->
{true, H};

false ->
first(Pred, T)

end;
first(Pred, []) ->

false.

first returns ftrue, Rg, where R is the first element in a list satisfying a predicate or false:

19> lists:first(Big, [1,2,45,6,123]).
ftrue,45g
20> lists:first(Big, [1,2,4,5]).
false

16 Erlang Extensions Since 4.4

1.2: Programming with Funs

1.2.6 Funs which Return Funs

So far, this section has only described functions which take Funs as arguments. It is also possible to
write more powerful functions which themselves return Funs. The following examples illustrate these
type of functions.

Simple Higher Order Functions

Adder(X) is a function which, given X, returns a new function G such that G(K) returns K + X.

21> Adder = fun(X) -> fun(Y) -> X + Y end end.
#Fun<erl eval>
22> Add6 = Adder(6).
#Fun<erl eval>
23> Add6(10).
16

Infinite Lists

The idea is to write something like:

-module(lazy).
-export([ints_from/1]).
ints_from(N) ->

fun() ->
[N|ints_from(N+1)]

end.

Then we can proceed as follows:

24> XX = lazy:ints_from(1).
#Fun<lazy>
25> XX().
[1|#Fun<lazy>]
26> hd(XX()).
1
27> Y = tl(XX()).
#Fun<lazy>
28> hd(Y()).
2

etc. - this is an example of “lazy embedding”

17Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

Parsing

The following examples show parsers of the following type:

Parser(Toks) -> fok, Tree, Toks1g | fail

Toks is the list of tokens to be parsed. A successful parse returns fok, Tree, Toks1g, where Tree is a
parse tree and Toks1 is a tail of Tree which contains symbols encountered after the structure which was
correctly parsed. Otherwise fail is returned.

The example which follows illustrates a simple, functional parser which parses the grammar:

(a | b) & (c | d)

The following code defines a function pconst(X) in the module funparse, which returns a Fun which
parses a list of tokens.

pconst(X) ->
fun (T) ->

case T of
[X|T1] -> {ok, {const, X}, T1};
_ -> fail

end
end.

This function can be used as follows:

29> P1 = funparse:pconst(a).
#Fun<hof>
30> P1([a,b,c]).
fok,fconst,ag,[b,c]g
31> P1([x,y,z]).
fail

Next, we define the two higher order functions pand and por which combine primitive parsers to
produce more complex parsers. Firstly pand:

pand(P1, P2) ->
fun (T) ->

case P1(T) of
{ok, R1, T1} ->

case P2(T1) of
{ok, R2, T2} ->

{ok, {’and’, R1, R2}};
fail ->

fail
end;

fail ->
fail

end
end.

18 Erlang Extensions Since 4.4

1.2: Programming with Funs

Given a parser P1 for grammar G1, and a parser P2 for grammar G2, pand(P1, P2) returns a parser for
the grammar which consists of sequences of tokens which satisfy G1 followed by sequences of tokens
which satisfy G2.

por(P1, P2) returns a parser for the language described by the grammar G1 or G2.

por(P1, P2) ->
fun (T) ->

case P1(T) of
{ok, R, T1} ->

{ok, {’or’,1,R}, T1};
fail ->

case P2(T) of
{ok, R1, T1} ->

{ok, {’or’,2,R1}, T1};
fail ->

fail
end

end
end.

The original problem was to parse the grammar (a | b) & (c | d). The following code addresses this
problem:

grammar() ->
pand(

por(pconst(a), pconst(b)),
por(pconst(c), pconst(d))).

The following code adds a parser interface to the grammar:

parse(List) ->
(grammar())(List).

We can test this parser as follows:

32> funparse:parse([a,c]).
fok,f’and’,f’or’,1,fconst,agg,f’or’,1,fconst,cgggg
33> funparse:parse([a,d]).
fok,f’and’,f’or’,1,fconst,agg,f’or’,2,fconst,dgggg
34> funparse:parse([b,c]).
fok,f’and’,f’or’,2,fconst,bgg,f’or’,1,fconst,cgggg
35> funparse:parse([b,d]).
fok,f’and’,f’or’,2,fconst,bgg,f’or’,2,fconst,dgggg
36> funparse:parse([a,b]).
fail

19Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

1.3 List Comprehensions

List comprehensions are a feature of many modern functional programming languages. Subject to
certain rules, they provide a succinct notation for generating elements in a list.

List comprehensions are analogous to set comprehensions in Zermelo-Frankel set theory and are called
ZF expressions in Miranda. They are analogous to the setof and findall predicates in Prolog.

List comprehensions are written with the following syntax:

[Expression || Qualifier1, Qualifier2, ...]

Expression is an arbitrary expression, and each Qualifier is either a generator or a filter.

� A generator written as Pattern <- ListExpr. ListExpr must be an expression which evaluates
to a list of terms.

� A filter is either a predicate or a boolean expression. A predicate is a function which returns true
or false.

1.3.1 Examples of List Comprehensions

We start with a simple example:

> [X || X <- [1,2,a,3,4,b,5,6], X > 3].
[a,4,b,5,6]

This should be read as follows:

The list of X such that X is taken from the list [1,2,a,...] and X is greater than 3.

The notation X <- [1,2,a,...] is a generator and the expression X > 3 is a filter.

An additional filter can be added in order to restrict the result to integers:

> [X || X <- [1,2,a,3,4,b,5,6], integer(X), X > 3].
[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can be written as follows:

> [{X, Y} || X <- [1,2,3], Y <- [a,b]].
[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

20 Erlang Extensions Since 4.4

1.3: List Comprehensions

Quick Sort

The well known quick sort routine can be written as follows:

sort([Pivot|T]) ->
sort([X || X <- T, X < Pivot]) ++
[Pivot] ++
sort([X || X <- T, X >= Pivot]);

sort([]) -> [].

The expression [X || X <- T, X < Pivot] is the list of all elements in T, which are less than Pivot.

[X || X <- T, X >= Pivot] is the list of all elements in T, which are greater or equal to Pivot.

To sort a list, we isolate the first element in the list and split the list into two sub-lists. The first sub-list
contains all elements which are smaller than the first element in the list, the second contains all
elements which are greater than or equal to the first element in the list. We then sort the sub-lists and
combine the results.

Permutations

The following example generates all permutations of the elements in a list:

perms([]) -> [[]];
perms(L) -> [[H|T] || H <- L, T <- perms(L--[H])].

We take take H from L in all possible ways. The result is the set of all lists [H|T], where T is the set of all
possible permutations of L with H removed.

> perms([b,u,g]).
[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

Pythagorean Triplets

Pythagorean triplets are sets of integers fA,B,Cg such that A**2 + B**2 = C**2.

The function pyth(N) generates a list of all integers fA,B,Cg such that A**2 + B**2 = C**2 and where
the sum of the sides is less than N.

pyth(N) ->
[{A,B,C} ||

A <- lists:seq(1,N),
B <- lists:seq(1,N),
C <- lists:seq(1,N),
A+B+C =< N,
A*A+B*B == C*C

].

21Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

> pyth(3).
[].
> pyth(11).
[].
> pyth(12).
[f3,4,5g,f4,3,5g]
> pyth(50).
[f3,4,5g,f4,3,5g,f5,12,13g,f6,8,10g,f8,6,10g,f8,15,17g,
f9,12,15g,f12,5,13g,f12,9,15g,f12,16,20g,f15,8,17g,
f16,12,20g]

The following code reduces the search space and is more efficient:

pyth1(N) ->
[{A,B,C} ||

A <- lists:seq(1,N),
B <- lists:seq(1,N-A+1),
C <- lists:seq(1,N-A-B+2),
A+B+C =< N,
A*A+B*B == C*C].

Simplifications with List Comprehensions

As an example, list comprehensions can be used to simplify some of the functions in lists.erl:

append(L) -> [X || L1 <- L, X <- L1].
map(Fun, L) -> [Fun(X) || X <- L].
filter(Pred, L) -> [X || X <- L, Pred(X)].

1.3.2 Variable Bindings in List Comprehensions

The scope rules for variables which occur in list comprehensions are as follows:

� all variables which occur in a generator pattern are assumed to be “fresh” variables

� any variables which are defined before the list comprehension and which are used in filters have
the values they had before the list comprehension

� no variables may be exported from a list comprehension.

As an example of these rules, suppose we want to write the function select, which selects certain
elements from a list of tuples. We might write select(X, L) -> [Y || fX, Yg <- L]. with the
intention of extracting all tuples from L where the first item is X.

Compiling this yields the following diagnostic:

./FileName.erl:Line: Warning: variable ’X’ shadowed in generate

This diagnostic warns us that the variable X in the pattern is not the same variable as the variable X
which occurs in the function head.

Evaluating select yields the following result:

> select(b,[fa,1g,fb,2g,fc,3g,fb,7g]).
[1,2,3,7]

22 Erlang Extensions Since 4.4

1.4: Macros

This result is not what we wanted. To achieve the desired effect we must write select as follows:

select(X, L) -> [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into the filter. This now
works as expected:

> select(b,[fa,1g,fb,2g,fc,3g,fb,7g]).
[2,7]

One consequence of the rules for importing variables into a list comprehensions is that certain pattern
matching operations have to be moved into the filters and cannot be written directly in the generators.
To illustrate this, do not write as follows:

f(...) ->
Y = ...
[Expression || PatternInvolving Y <- Expr, ...]
...

Instead, write as follows:

f(...) ->
Y = ...
[Expression || PatternInvolving Y1 <- Expr, Y == Y1, ...]
...

1.4 Macros

Macros in Erlang are written with the following syntax:

-define(Const, Replacement).
-define(Fun(Var1, Var2,.., Var), Replacement).

Macros are expanded when the syntax ?MacroName is encountered.

Consider the macro definition:

-define(timeout, 200).

The expression ?timeout, which can occur anywhere in the code which follows the macro definition,
will be replaced by 200.

Macros with arguments are written as follows:

-define(macro1(X, Y), {a, X, b, Y}).

This type of macro can be used as follows:

bar(X) ->
?macro1(a, b),
?macro1(X, 123)

This expands to:

bar(X) ->
{a,a,b,b},
{a,X,b,123}.

23Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

1.4.1 Macros and Tokens

Macro expansion works at a token level. We might define a macro as follows:

-define(macro2(X, Y), {a,X,b,Y).

The replacement value of the macro is not a valid Erlang term because the closing right curly bracket is
missing. macro2 expands into a sequence of tokens f, a, X which are then pasted into the place where
the macro is used.

We might use this macro as follows:

bar() ->
?macro2(x,y)}.

This will expand into the valid sequence of tokens fa,x,y,bg before being parsed and compiled.

Note:
It is good programming practise to ensure that the replacement text of a macro is a valid Erlang
syntactic form.

1.4.2 Pre-Defined Macros

The following macros are pre-defined:

?MODULE. This macro returns the name of the current module.

?MODULE STRING. This macro returns the name of the current module, as a string.

?FILE. This macro returns the current file name.

?LINE. This macro returns the current line number.

?MACHINE. This macro returns the current machine name, ’BEAM’,

1.4.3 Stringifying Macro Arguments

The construction ??Arg for an argument to a macro expands to a string containing the tokens of the
argument, similar to the #arg stringifying construction in C. This was added in Erlang 5.0 (OTP R7A).

Example:

-define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).

?TESTCALL(myfunction(1,2)),
?TESTCALL(you:function(2,1)).

results in

io:format("Call ~s: ~w~n",["myfunction (1 , 2)",m:myfunction(1,2)]),
io:format("Call ~s: ~w~n",["you : function (2 , 1)",you:function(2,1)]).

24 Erlang Extensions Since 4.4

1.4: Macros

1.4.4 Flow Control in Macros

The following macro directives are supplied:

-undef(Macro). Causes the macro to behave as if it had never been defined.

-ifdef(Macro). Do the following lines if Macro is defined.

-ifndef(Macro). Do the following lines if Macro is not defined.

-else. “else” macro

-endif. “endif” macro.

The conditional macros must be properly nested. They are usually grouped as follows:

-ifdef(debug)
-define(....)
-else
-define(...)
-endif

The following example illustrates this grouping:

-define(debug, true).
-ifdef(debug).
-define(trace(Str, X), io:format("Mod:~w line:~w ~p ~p~n",

[?MODULE,?LINE, Str, X])).
-else.
-define(trace(X, Y), true).
-endif.

Given these definitions, the expression ?trace("X=", X). in line 10 of the module foo expands to:

io:format("Mod:~w line:~w ~p ~p~n",[foo,100,"X=",[X]]),

If we remove the -define(debug, true). line, then the same expression expands to true.

1.4.5 A Macro Expansion Utility

The following code can be used to expand a macro and display the result:

-module(mexpand).
-export([file/1]).
-import(lists, [foreach/2]).
file(File) ->
case epp:parse_file(File ++ ".erl", [],[]) of
{ok, L} ->
{ok, Stream} = file:open(File ++ ".out", write),
foreach(fun(X) ->

io:format(Stream,"~s~n",[erl_pp:form(X)])
end, L),

file:close(Stream)
end.

Alternatively, we can compile the file with the ’P’ option. compile:file(File, [’P’]) produces a
list file File.P, in which the result of any macro expansions can be seen.

25Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

1.5 Includes

There are two directives which can be used in an Erlang source file to cause the compiler to temporarily
read input from another source. They are typically used to provide macro definitions and record
definitions from header files. It is recommended to use the file name extension ".hrl" for files which
are meant to be included (the ’h’ can be read as “header”).

1.5.1 The -include Directive

The compiler searches for the specified header file in each directory in the compiler’s include path. The
first file found is included. Example:

-include("my_records.hrl").

The current directory is implicitly a member of the compiler’s include path.

1.5.2 The -include lib Directive

The -include lib directive instructs the compiler/preprocessor to look for a header file in an
application directory. The first part of the specified pathname) is taken as the name of an application,
and the current version of that application will be used. Example:

-include_lib("mnesia/include/mnemosyne.hrl").

This instructs the compiler/preprocessor to look for the directory where the application called mnesia
is installed and then looks in the subdirectory include for the file mnemosyne.hrl.

The preprocessor first looks in the ordinary preprocessor search path to allow explicit overloading of the
header files.

1.6 The Bit Syntax

This section describes the “bit syntax” which was added to the Erlang language in release 5.0 (R7).
Compared to the original bit syntax prototype by Claes Wikstrm and Tony Rogvall (presented on the
Erlang User’s Conference 1999), this implementation differs primarily in the following respects,

1. the character pairs ’<<’ and ’>>’ are used to delimit a binary patterns and constructor (not ’<’
and ’>’ as in the prototype),

2. the tail syntax (’|Variable’) has been eliminated,

3. all size expressions must be bound,

4. a type unit:U has been added,

5. lists and tuples cannot be generated

6. there are no paddings whatsoever.

26 Erlang Extensions Since 4.4

1.6: The Bit Syntax

1.6.1 Introduction

In Erlang a Bin is used for constructing binaries and matching binary patterns. A Bin is written with the
following syntax:

<<E1, E2, ... En>>

A Bin is a low-level sequence of bytes. The purpose of a Bin is to be able to, from a high level, construct
a binary,

Bin = <<E1, E2, ... En>>

in which case all elements must be bound, or to match a binary,

<<E1, E2, ... En>> = Bin

where Bin is bound, and where the elements are bound or unbound, as in any match.

Each element specifies a certain segment of the binary. A segment is is a set of contiguous bits of the
binary (not necessarily on a byte boundary). The first element specifies the initial segment, the second
element specifies the following segment etc.

The following examples illustrate how binaries are constructed or matched, and how elements and tails
are specified.

Examples

Example 1: A binary can be constructed from a set of constants or a string literal:

Bin11 = <<1, 17, 42>>,
Bin12 = <<"abc">>

yields binaries of size 3; binary to list(Bin11) evaluates to [1, 17, 42], and
binary to list(Bin12) evaluates to [97, 98, 99].

Example 2: Similarly, a binary can be constructed from a set of bound variables:

A = 1, B = 17, C = 42,
Bin2 = <<A, B, C:16>>

yields a binary of size 4, and binary to list(Bin2) evaluates to [1, 17, 00, 42] too. Here we used
a size expression for the variable C in order to specify a 16-bits segment of Bin2.

Example 3: A Bin can also be used for matching: if D, E, and F are unbound variables, and Bin2 is bound
as in the former example,

<<D:16, E, F/binary>> = Bin2

yields D = 273, E = 00, and F binds to a binary of size 1: binary to list(F) = [42].

Example 4: The following is a more elaborate example of matching, where Dgram is bound to the
consecutive bytes of an IP datagram of IP protocol version 4, and where we want to extract the header
and the data of the datagram:

27Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).

DgramSize = size(Dgram),
case Dgram of
<<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
ID:16, Flgs:3, FragOff:13,
TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32,
DestIP:32, RestDgram/binary>> when HLen >= 5, 4*HLen =< DgramSize ->
OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
<<Opts:OptsLen/binary,Data/binary>> = RestDgram,
...
end.

Here the segment corresponding to the Opts variable has a type modifier specifying that Opts should
bind to a binary. All other variables have the default type equal to unsigned integer.

An IP datagram header is of variable length, and its length - measured in the number of 32-bit words -
is given in the segment corresponding to HLen, the minimum value of which is 5. It is the segment
corresponding to Opts that is variable: if HLen is equal to 5, Opts will be an empty binary.

The tail variables RestDgram and Data bind to binaries, as all tail variables do. Both may bind to empty
binaries.

If the first 4-bits segment of Dgram is not equal to 4, or if HLen is less than 5, or if the size of Dgram is
less than 4*HLen, the match of Dgram fails.

1.6.2 A Lexical Note

Note that “B=<<1>>” will be interpreted as “B =< ;<1>>”, which is a syntax error. The correct way
to write the expression is “B = <<1>>”.

1.6.3 Segments

Each segment has the following general syntax:

Value:Size/TypeSpecifierList

Both the Size and the TypeSpecifier or both may be omitted; thus the following variations are
allowed:

Value

Value:Size

Value/TypeSpecifierList

Default values will be used for missing specifications. The default values are described in the section
“Defaults” below.

Used in binary construction, the Value part is any expression. Used in binary matching, the Value part
must be a literal or variable. You can read more about the Value part in the sections about constructing
binaries and matching binaries.

The Size part of the segment multiplied by the unit in the TypeSpecifierList (described below)
gives the number of bits for the segment. In construction, Size is any expression that evaluates to an
integer. In matching, Size must be a constant expression or a variable.

The TypeSpecifierList is a list of type specifiers separated by hyphens.

28 Erlang Extensions Since 4.4

1.6: The Bit Syntax

Type The type can be integer, float, or binary.

Signedness The signedness specification can be either signed or unsigned. Note that signedness only
matters for matching.

Endianness The endianness specification can be either big or little.

Unit The unit size is given as unit:IntegerLiteral. The allowed range is 1-256. It will be multiplied
by the Size specifier to give the effective size of the segment.

Example:

X:4/little-signed-integer-unit:8

This element has a total size of 4*8 = 32 bits, and it contains a signed integer in little-endian order.

1.6.4 Defaults

The default type for a segment is integer. The default type does not depend on the value, even if the
value is a literal. For instance, the default type in ’<<3.14>>’ is integer, not float.

The default Size depends on the type. For integer it is 8. For float it is 64. For binary it is all of the
binary. In matching, this default value is only valid for the very last element. All other binary elements
in matching must have a size specification.

The default unit depends on the the type. For integer and float it is 1. For binary it is 8.

The default signedness is unsigned.

The default endianness is big.

1.6.5 Constructing Binaries

This section describes the rules for constructing binaries using the bit syntax. Unlike when constructing
lists or tuples, the construction of a binary can fail with a badarg exception.

There can be zero or more segments in a binary to be constructed. The expression ’<<>>’ constructs a
zero length binary.

Each segment in a binary can consist of zero or more bits. There are no alignment rules for individual
segments, but the total number of bits in all segments must be evenly divisible by 8, or in other words,
the resulting binary must consist of a whole number of bytes. An badarg exception will be thrown if
the resulting binary is not byte-aligned. Example:

<<X:1,Y:6>>

The total number of bits is 7, which is not evenly divisible by 8; thus, there will be badarg exception
(and a compiler warning as well). The following example

<<X:1,Y:6,Z:1>>

will successfully construct a binary of 8 bits, or one byte. (Provided that all of X, Y and Z are integers.)

As noted earlier, segments have the following general syntax:

Value:Size/TypeSpecifierList

When constructing binaries, Value and Size can be any Erlang expression. However, for syntactical
reasons, both Value and Size must be enclosed in parenthesis if the expression consists of anything
more than a single literal or variable. The following gives a compiler syntax error:

29Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

<<X+1:8>>

This expression must be rewritten to

<<(X+1):8>>

in order to be accepted by the compiler.

Including Literal Strings

As syntactic sugar, an literal string may be written instead of a element.

<<"hello">>

which is syntactic sugar for

<<$h,$e,$l,$l,$o>>

1.6.6 Matching Binaries

This section describes the rules for matching binaries using the bit syntax.

There can be zero or more segments in a binary binary pattern. A binary pattern can occur in every
place patterns are allowed, also inside other patterns. Binary patterns cannot be nested.

The pattern ’<<>>’ matches a zero length binary.

Each segment in a binary can consist of zero or more bits.

A segment of type binary must have a size evenly divisible by 8.

This means that the following head will never match:

foo(<<X:7/binary,Y:1/binary>>) ->

As noted earlier, segments have the following general syntax:

Value:Size/TypeSpecifierList

When matching Value value must be either a variable or an integer or floating point literal. Expressions
are not allowed.

Size must be an integer literal, or a previously bound variable. Note that the following is not allowed:

foo(N, <<X:N,T/binary>>) ->
{X,T}.

The two occurrences of N are not related. The compiler will complain that the N in the size field is
unbound.

The correct way to write this example is like this:

foo(N, Bin) ->
<<X:N,T/binary>> = Bin,
{X,T}.

30 Erlang Extensions Since 4.4

1.7: Miscellaneous

Getting the Rest of the Binary

To match out the rest of binary, specify a binary field without size:

foo(<<A:8,Rest/binary>>) ->

As always, the size of the tail must be evenly divisible by 8.

1.6.7 Traps and Pitfalls

Assume that we need a function that creates a binary out of a list of triples of integers. A first
(inefficient) version of such a function could look like this:

triples_to_bin(T) ->
triples_to_bin(T, <<>>).

triples_to_bin([{X,Y,Z} | T], Acc) ->
triples_to_bin(T, <<Acc/binary, X:32, Y:32, Z:32>>); % inefficient

triples_to_bin([], Acc) ->
Acc.

The reason for the inefficiency of this function is that for each triple, the binary constructed so far (Acc)
is copied. (Note: The original bit syntax prototype avoided the copy operation by using segmented
binaries, which are not implemented in R7.)

The efficient way to write this function in R7 is:

triples_to_bin(T) ->
triples_to_bin(T, []).

triples_to_bin([{X,Y,Z} | T], Acc) ->
triples_to_bin(T, [<<X:32, Y:32, Z:32>> | Acc]);

triples_to_bin([], Acc) ->
list_to_binary(lists:reverse(Acc)).

Note that list to binary/1 handles deep lists of binaries and small integers. (This fact was previously
undocumented.)

1.7 Miscellaneous

In this chapter, a number of miscellaneous features of Erlang are described.

31Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

1.7.1 Token Syntax

In Erlang 4.8 (OTP R5A) the syntax of Erlang tokens have been extended to allow the use of the full
ISO-8859-1 (Latin-1) character set. This is noticeable in the following ways:

� All the Latin-1 printable characters can be used and are shown without the escape backslash
convention.

� Atoms and variables can use all Latin-1 letters.

The new characters from Latin-1 have the following classifications in Erlang:

Octal Decimal Class

200 - 237 128 - 159 Control characters

240 - 277 160 - 191 - Punctuation characters

300 - 326 192 - 214 - Uppercase letters

327 215 Punctuation character

330 - 336 216 - 222 - Uppercase letters

337 - 366 223 - 246 - Lowercase letters

367 247 Punctuation character

370 - 377 248 - 255 - Lowercase letters

Table 1.1: Character classes

1.7.2 String Concatenation

Two adjacent string literals are concatenated into one. This is done already at compile-time, and doesn’t
incur any runtime overhead. Example:

"string" "42"

is equivalent to

"string42"

This feature is convenient in at least two situations:

� when one of the strings is the result of a macro expansion;

� when a string is very long, and would otherwise either have to wrap, making the source code
harder to read, or force the use of some runtime append operation.

32 Erlang Extensions Since 4.4

1.7: Miscellaneous

1.7.3 The ++ list Concatenation Operator

Since list concatenation is a very common operation, it is convenient to have a terse way of expressing
it. The ++ operator appends its second argument to its first. Example:

X = [1,2,3],
Y = [4,5],
X ++ Y.

results in [1,2,3,4,5].

The ++ operator has precedence between the binary ’+’ operator and the comparison operators.

1.7.4 The - - list Subtraction Operator

The - - operator produces a list which is a copy of the first argument, subjected to the following
procedure: for each element in the second argument, its first occurrence in the first argument is
removed.

X = [1,2,3,2,1,2],
Y = [2,1,2],
X -- Y.

results in [3,1,2].

The - - operator has precedence between the binary ’+’ operator and the comparison operators.

1.7.5 Bitwise Operator bnot

Apart from the binary bitwise operators band, bor and bxor, there is a unary operator bnot with the
same precedence as the other unary operators + and -, i.e., higher than the binary operators. Example:

bnot 7.

returns -8.

1.7.6 Logical Operators

The atoms true and false are usually used for representing Boolean values. With the binary operators
and, or and xor, and the unary operator not, Boolean values can be combined. Example:

M1 = lists:member(A, List1),
M2 = lists:member(A, List2),
M1 and M2.

Note that the operators are strict, i.e., they always evaluate both their arguments.

not has the same priority as the other unary operators. The binary logical operators have precedence
between the = operator and the comparison operators, the and operator having higher precedence than
or and xor.

33Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

1.7.7 Match Operator = In Patterns

This extension was added in Erlang 4.8 (OTP R5A).

The = operator is also called the ‘match’ operator. The match operator can now be used in a pattern, so
that P1 = P2 is a valid pattern, where both P1 and P2 are patterns. This compound pattern when
matched against a term causes the term to be matched against both P1 and P2.

One use for this construction is to avoid reconstructing a term which was part of an argument to a
function. Example:

f({’+’,X,Y}=T) -> {X+Y,T}.

It also makes it possible to rewrite the construction

f(X) when X == #rec{x=1, y=a} -> ...

as

f(#rec{x=1, y=a} = X) -> ...

In the absence of optimization for the former case, the latter case is more efficient.

1.7.8 Literal String Prefix in Patterns

This extension was added in Erlang 4.8 (OTP R5A).

A new construction is allowed in patterns, namely a literal string as the first operand of the ++ operator.
Example:

f("prefix" ++ L) -> ...

This is syntactic sugar for the equivalent, but harder to read

f([$p,$r,$e,$f,$i,$x | L]) -> ...

1.7.9 Disjunctions in Guards

This extension was added in Erlang 4.9 (OTP R6A).

A new construction is allowed in guards, the disjunction operator ’;’. The construction is syntactic sugar
which removes the bother of writing the same body after several guards.

f(X) when xxx ; yyy ; zzz ->
pop(X).

This is syntactic sugar for the equivalent

f(X) when xxx ->
pop(X);

f(X) when yyy ->
pop(X);

f(X) when zzz ->
pop(X).

The abstract format has been changed accordingly to contain a list of (conjunctive) guards where there
was previously only one guard.

34 Erlang Extensions Since 4.4

1.7: Miscellaneous

1.7.10 Expressions in Patterns

This extension was added in Erlang 5.0 (OTP R7A).

An arithmetic expression can be used within a pattern, if it uses only numeric or bitwise operators, and
if its value can be evaluated to a constant at compile-time. This is especially useful when the expression
is defined by a macro.

Example:

case X of
{1+2, T} -> T

end.

1.7.11 Boolean expresions in guards

This extension was added in Erlang 5.1 (OTP R8).

In guards, the use of and, or and not is now allowed. Guard expressions can combine these with
parenthesis. This allows for more elaborate guards than what may be given with , and ;.

Note:
The guard expressions written with these operators are boolean expressions, and the boolean
functions is list, is integer etc. should be used, rather than list, integer etc.

Example 1:

f(X) when not (is_tuple(X) or is_list(X)) ->
...

Example 2:

g(A, B) when (A > 0) and (B > 0) and not (A*A < B*B) ->
...

35Erlang Extensions Since 4.4

Chapter 1: Erlang Extensions Since 4.4

1.7.12 Short-circuit boolean expressions

This extension was added in Erlang 5.1 (OTP R8).

In a boolean expression it is unnecessary to always evaluate all terms. If the first term gives a result that
determines the result, the second term is not needed. In Erlang two new keywords handles boolean
expressions without evaluating both terms, if it’s unnecessary. (This is called short-curcuit boolean
evaluation.)

The keyword andalso is a short-curcuit version of and. The keyword orelse is a short-curcuit version
of or. They can be used in boolean expressions (not guards) instead of and and or.

Example 1:

case A >= -1.0 andalso math:sqrt(A+1) > B of

This will work even if A is less than -1.0, since in that case, the second term (after andalso) is never
evaluated. (Of course, the same effects could have been done using guards. In guards, evaluation is
always short-circuited, since guard tests are known to be free of side-effects.)

Example 2:

OnlyOne = is_atom(L) orelse
(is_list(L) andalso length(L) == 1),

36 Erlang Extensions Since 4.4

List of Tables

1.1 Character classes . 32

37Erlang Extensions Since 4.4

